
RELATIONAL DATA BASE MANAGEMENT SYSTEM

Introduction of RDBMS

The relational database was first defined in June 1970 by Edgar Codd, of IBM's San Jose

Research Laboratory. Codd's view of what qualifies as an RDBMS is summarized in Codd's 12

rules. A relational database has become the predominant type of database.

A relational database is a type of database that stores and provides access to data points

that are related to one another.

Use of RDBMS

The use of an RDBMS can be beneficial to most organizations; the systematic view of

raw data helps companies better understand and execute the information while enhancing the

decision-making process. The use of tables to store data also improves the security of

information stored in the databases.

Advantages of RDBMS

 RDBMS is based on rows and columns (table). So it is easier to understand

RDBMS work.

 RDBMS supports more than one user.

 As it is advanced it can easily handle huge amounts of data.

 Security is pretty good for RDBMS.

Most significant advantage of RDBMS

Flexibility: An RDBMS is flexible in allowing users to change or store data in the database. This

is helpful when users want to update the information in the stored data set. Simplicity: Relational

databases are one of the simplest models to store and retrieve large data items in an organized

way.

Codd's 12 Rules

Dr Edgar F. Codd, after his extensive research on the Relational Model of database systems,

came up with twelve rules of his own, which according to him, a database must obey in order to

be regarded as a true relational database.These rules can be applied on any database system that

manages stored data using only its relational capabilities. This is a foundation rule, which acts as

a base for all the other rules.

Rule 1: Information Rule

The data stored in a database, may it be user data or metadata, must be a value of some table

cell. Everything in a database must be stored in a table format.

Rule 2: Guaranteed Access Rule

Every single data element (value) is guaranteed to be accessible logically with a combination of

table-name, primary-key (row value), and attribute-name (column value). No other means, such

as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL Values

The NULL values in a database must be given a systematic and uniform treatment. This is a very

important rule because a NULL can be interpreted as one the following − data is missing, data is

not known, or data is not applicable.

Rule 4: Active Online Catalog

The structure description of the entire database must be stored in an online catalog, known

as data dictionary, which can be accessed by authorized users. Users can use the same query

language to access the catalog which they use to access the database itself.

Rule 5: Comprehensive Data Sub-Language Rule

A database can only be accessed using a language having linear syntax that supports data

definition, data manipulation, and transaction management operations. This language can be

used directly or by means of some application. If the database allows access to data without any

help of this language, then it is considered as a violation.

Rule 6: View Updating Rule

All the views of a database, which can theoretically be updated, must also be updatable by the

system.

Rule 7: High-Level Insert, Update, and Delete Rule

A database must support high-level insertion, updation, and deletion. This must not be limited to

a single row, that is, it must also support union, intersection and minus operations to yield sets of

data records.

Rule 8: Physical Data Independence

The data stored in a database must be independent of the applications that access the database.

Any change in the physical structure of a database must not have any impact on how the data is

being accessed by external applications.

Rule 9: Logical Data Independence

The logical data in a database must be independent of its user’s view (application). Any change

in logical data must not affect the applications using it. For example, if two tables are merged or

one is split into two different tables, there should be no impact or change on the user application.

This is one of the most difficult rule to apply.

Rule 10: Integrity Independence

A database must be independent of the application that uses it. All its integrity constraints can be

independently modified without the need of any change in the application. This rule makes a

database independent of the front-end application and its interface.

Rule 11: Distribution Independence

The end-user must not be able to see that the data is distributed over various locations. Users

should always get the impression that the data is located at one site only. This rule has been

regarded as the foundation of distributed database systems.

Rule 12: Non-Subversion Rule

If a system has an interface that provides access to low-level records, then the interface must not

be able to subvert the system and bypass security and integrity constraints.t c

What is a Primary Key

A Primary Key is the minimal set of attributes of a table that has the task to uniquely

identify the rows, or we can say the tuples of the given particular table.

A primary key of a relation is one of the possible candidate keys which the database designer

thinks it's primary. It may be selected for convenience, performance and many other reasons.

The choice of the possible primary key from the candidate keys depend upon the following

conditions.ackward Skip 10sPlay Video Forward Skip 10s

 Minimal: The primary key should be composed of the minimum number of attributes

that satisfy unique occurrences of the tuples. So if one candidate key is formed using

two attributes and another using a single attribute then the one with the single

attribute key should be chosen as the primary key.

 Accessible: The primary key used should be accessible by anyone who wants to use

it. The user must easily insert, access or delete a tuple using it.

 NON NULL Value: The primary key must have a non-null value for each tuple of

the relation, which is required for the identification of the tuple.

 Time Variant: The values of the primary key must not change or become null during

the time of a relation.

 Unique: The value of the primary key must not be duplicated in any of the tuples of a

relation.

Syntax for creating primary key constraint:

The primary key constraint can be defined at the column level or table level.

At column level:

1. <column_name><datatype> Primary key;

At table level:

1. Primary key(<column_name1>[,column_name>]....);

Properties of a Primary Key:

 A relation can contain only one primary key.

 A primary key may be composed of a single attribute known as single primary key or

more than one attribute known as composite key.

 A primary key is the minimum super key.

 The data values for the primary key attribute should not be null.

 Attributes which are part of a primary key are known as Prime attributes.

 Primary key is always chosen from the possible candidate keys.

 If the primary key is made of more than one attribute then those attributes are

irreducible.

 We use the convention that the attribute that form primary key of relation is

underlined.

 Primary key cannot contain duplicate values.

 Columns that are defined as LONG or LONG RAW cannot be part of a primary key.

Use of Primary Key

As defined above, a primary key is used to uniquely identify the rows of a table. Thus, a row that

needs to be uniquely identified, the key constraint is set as the Primary key to that particular

field. A primary key can never have a NULL value because the use of the primary key is to

identify a value uniquely, but if no value will be there, how could it sustain. Thus, the field set

with the primary key constraint cannot be NULL. Also, it all depends on the user that the user

can add or delete the key if applied.

Understanding Primary Key

Let's discover some examples through which we can understand the role and use of a Primary

key. Generally, in a database, we apply the primary key on those tuples or columns through

which we need to uniquely identify the other database fields.

For example: When we store the registration details of the students in the database, we find the

registration number field unique and assign the primary key to the field. Also, for an employee

table, we set the primary key on the employee Id of the table.ertified by completing the course

Let's understand it practically:

Below is the table named STUDENT_DETAILS, where Roll_no, Name, and Marks are the

specified attributes of it.

As we know that from these three attributes, the Roll_no attribute is the one that can uniquely

identify other two attributes of the table as each student is provided with a unique roll number in

every organization. So, we can set the primary key constraint on the Roll_no column.

What is a Foreign Key

A foreign key is the one that is used to link two tables together via the primary key. It means the

columns of one table points to the primary key attribute of the other table. It further means that if

any attribute is set as a primary key attribute will work in another table as a foreign key attribute.

But one should know that a foreign key has nothing to do with the primary key.

Use of Foreign Key

The use of a foreign key is simply to link the attributes of two tables together with the help of a

primary key attribute. Thus, it is used for creating and maintaining the relationship between the

two relations.

Example of Foreign Key

Let's discuss an example to understand the working of a foreign key.

Consider two tables Student and Department having their respective attributes as shown in the

below table structure:

In the tables, one attribute, you can see, is common, that is Stud_Id, but it has different key

constraints for both tables. In the Student table, the field Stud_Id is a primary key because it is

uniquely identifying all other fields of the Student table. On the other hand, Stud_Id is a foreign

key attribute for the Department table because it is acting as a primary key attribute for the

Student table. It means that both the Student and Department table are linked with one another

because of the Stud_Id attribute.

In the below-shown figure, you can view the following structure of the relationship between the

two tables.

What is a Candidate Key

A candidate key is a subset of a super key set where the key which contains no redundant

attribute is none other than a Candidate Key. In order to select the candidate keys from the set

of super key, we need to look at the super key set.

Role of a Candidate Key

The role of a candidate key is to identify a table row or column uniquely. Also, the value

of a candidate key cannot be Null. The description of a candidate key is "no redundant

attributes" and being a "minimal representation of a tuple," according to the Experts.

How a Candidate key is different from a Primary Key

Although the purpose of both candidate and the primary key is the same, that is to uniquely

identify the tuples, and then also they are different from each other. It is because, in a table, we

can have one or more than one candidate key, but we can create only one primary key for a

table. Thus, from the number of obtained candidate keys, we can identify the appropriate

primary key. However, if there is only one candidate key in a table, then it can be considered for

both key constraints.

Example of Candidate Key

Let's look at the same example took while discussing Super Key to understand the working of a

candidate key.

We have an EMPLOYEE_DETAIL table where we have the following attributes:

Emp_SSN: The SSN number is stored in this field.

Emp_Id: An attribute that stores the value of the employee identification number.

Emp_name: An attribute that stores the name of the employee holding the specified employee

id.

Emp_email: An attribute that stores the email id of the specified employees.

The EMPLOYEE_DETAIL table is given below that will help you understand better:

Alternate Key

The SQL Alternate Key

SQL Alternate Keys in a database table are candidate keys that are not currently selected as a

primary key. They can be used to uniquely identify a tuple(or a record) in a table.

There is no specific query or syntax to set the alternate key in a table. It is just a column that is a

close second candidate which could be selected as a primary key. Hence, they are also called

secondary candidate keys.

If a database table consists of only one candidate key, that is treated as the primary key of the

table, then there is no alternate key in that table.

The details like id, mobile number and aadhaar number of a customer are unique, and we can

identify the records from the CUSTOMERS table uniquely using their respective fields; ID,

AADHAAR_ID and MOBILE_NO. Therefore, these three fields can be treated as candidate

keys.

And among them, if one is declared as the primary key of the CUSTOMERS table then the

remaining two would be alternate keys.

Features of Alternate Keys

Following are some important properties/features of alternate keys −

 The alternate key does not allow duplicate values.

 A table can have more than one alternate keys.

 The alternate key can contain NULL values unless the NOT NULL constraint is set

explicitly.

 All alternate keys can be candidate keys, but all candidate keys can not be alternate keys.

 The primary key, which is also a candidate key, can not be considered as an alternate

key.

Data Definition Language

Data Definition Language(DDL) is a subset of SQL and a part of DBMS(Database Management

System). DDL consist of Commands to commands like CREATE, ALTER, TRUNCATE and DROP.
These commands are used to create or modify the tables in SQL.

The five DDL commands in SQL:

 CREATE Command.

 DROP Command.

 ALTER Command.

 TRUNCATE Command.

 RENAME Command.

 CREATE: This command is used to create the database or its objects (like table, index,

function, views, store procedure, and triggers).

 DROP: This command is used to delete objects from the database.

 ALTER: This is used to alter the structure of the database.

 TRUNCATE: This is used to remove all records from a table, including all spaces

allocated for the records are removed.

 COMMENT: This is used to add comments to the data dictionary.

 RENAME: This is used to rename an object existing in the database.

DQL (Data Query Language)

CREATE Command

Create is a DDL SQL command used to create a table or a database in relational

database management system.

Creating a Table

Create command can also be used to create tables. Now when we create a table, we have

to specify the details of the columns of the tables too. We can specify the names and datatypes of

various columns in the create command itself.

https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/
https://www.geeksforgeeks.org/sql-alter-rename/

Following is the syntax,

CREATE TABLE <TABLE_NAME>

(column_name1 datatype1,

 column_name2 datatype2,

 column_name3 datatype3,

 column_name4 datatype4

);

Create table command will tell the database system to create a new table with the given table

name and column information.

Example for creating Table

CREATE TABLE Student(

 student_id INT,

 name VARCHAR(100),

 age INT);

The above command will create a new table with name Student in the current database with 3

columns, namely student_id, name and age. Where the column student_id will only store

integer, name will hold upto 100 characters and age will again store only integer value.If you are

currently not logged into your database in which you want to create the table then you can also

add the database name along with table name, using a dot operator .For example, if we have a

database with name Test and we want to create a table Student in it, then we can do so using the

following query:

CREATE TABLE Test.Student(

 student_id INT,

 name VARCHAR(100),

 age INT);

Most commonly used datatypes for Table columns

Here we have listed some of the most commonly used datatypes used for columns in tables.

Datatype Use

INT used for columns which will store integer values.

FLOAT used for columns which will store float values.

DOUBLE used for columns which will store float values.

VARCHAR used for c columns which will be used to store characters and integers, basically a string.

CHAR used for columns which will store char values(single character).

DATE used for columns which will store date values.

TEXT

 used for columns which will store text which is generally long in length. For

example, if you create a table for storing profile information of a social

networking website, then for about me section you can have a column of

type TEXT.

Alter commands

The ALTER TABLE statement in SQL is used to add, remove, or modify columns in

an existing table. The ALTER TABLE statement is also used to add and remove various

constraints on existing tables.

ALTER TABLE ADD Column Statement in SQL

ADD is used to add columns to the existing table. Sometimes we may require to add additional

information, in that case, we do not require to create the whole database again, ADD comes to

our rescue.

ALTER TABLE ADD Column Statement Syntax:

ALTER TABLE table_name ADD (Columnname_1 datatype,

Columnname_2 datatype, …Columnname_n datatype);

The following SQL adds an “Email” column to the “Students” table:

ALTER TABLE ADD Column Statement Example:

ALTER TABLE Students

ADD Email varchar(25);

ALTER TABLE DROP Column Statement

DROP COLUMN is used to drop columns in a table. Deleting the unwanted columns from the

table.

ALTER TABLE DROP Column Statement Syntax:

ALTER TABLE table_name DROP COLUMN column_name;

The following SQL drop an “Email” column to the “Students” table:

ALTER TABLE DROP Column Statement Example:

ALTER TABLE StudentsDROP COLUMN Email;

ALTER TABLE MODIFY Column Statement in SQL

It is used to modify the existing columns in a table. Multiple columns can also be modified at

once.

ALTER TABLE MODIFY Column Statement Syntax:

 ALTER TABLE table_name

MODIFY column_name column_type;

ALTER TABLE MODIFY Column Statement Example:

ALTER TABLE table_name MODIFY COLUMN column_name datatype;

SQL ALTER TABLE Queries

Suppose there is a student database:

ROLL_NO NAME

1 Ram

2 Abhi

3 Rahul

4 Tanu

To ADD 2 columns AGE and COURSE to table Student.

Query: ALTER TABLE Student ADD (AGE number(3),COURSE varchar(40));

Output:

ROLL_NO NAME AGE COURSE

1 Ram

2 Abhi

3 Rahul

4 Tanu

MODIFY column COURSE in table Student.

Query: ALTER TABLE Student MODIFY COURSE varchar(20);

After running the above query the maximum size of the Course Column is reduced to 20 from

40.

DROP column COURSE in table Student.

Query: ALTER TABLE Student DROP COLUMN COURSE;

Output:

ROLL_NO NAME AGE

1 Ram

2 Abhi

3 Rahul

4 Tanu

SQL commands are broadly classified into two types DDL, DML here we will be learning about

DDL commands, and in DDL we will be learning about DROP and TRUNCATE in this article.

DDL Stands for Data Definition Language with the help of this DDL command we can add,

remove, or modify tables within a database. Here we are to discuss DROP and TRUNCATE

Commands So we are going to start with the DROP command first.

https://www.geeksforgeeks.org/ddl-full-form/

DROP

DROP is used to delete a whole database or just a table.

In this article, we will be learning about the DROP statement which destroys objects like an

existing database, table, index, or view. A DROP statement in SQL removes a component from

a relational database management system (RDBMS).

Syntax

DROP object object_name ;

Case 1: To Drop a table

DROP TABLE table_name;

table_name: Name of the table to be deleted.

Case 2: To Drop a database

Syntax:
DROP DATABASE database_name;

database_name: Name of the database to be deleted.

TRUNCATE

The major difference between TRUNCATE and DROP is that truncate is used to delete

the data inside the table not the whole table.

TRUNCATE statement is a Data Definition Language (DDL) operation that is used to mark the

extent of a table for deallocation (empty for reuse). The result of this operation quickly removes

all data from a table, typically bypassing several integrity-enforcing mechanisms. It was

officially introduced in the SQL:2008 standard. The TRUNCATE TABLE mytable statement is

logically (though not physically) equivalent to the DELETE FROM mytable statement (without

a WHERE clause).

Syntax

TRUNCATE TABLE table_name;

table_name: Name of the table to be truncated.

DATABASE name – student_data

 Differences Between DROP and TRUNCATE

DROP TRUNCATE

In the drop table data and its definition is deleted

with their full structure.

It preserves the structure of the table for

further use exist but deletes all the data.

Drop is used to eliminate existing complications

and fewer complications in the whole database from

the table.

Truncate is used to eliminate the tuples

from the table.

Integrity constraints get removed in the DROP

command.

Integrity constraint doesn’t get removed

in the Truncate command.

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/rdbms-full-form/

DROP TRUNCATE

 Since the structure does not exist, the View of the

table does not exist in the Drop command.

Since the structure exists, the View of

the table exists in the Truncate

command.

 Drop query frees the table space complications

from memory.

This query does not free the table space

from memory.

It is slow as there are so many complications

compared to the TRUNCATE command.

It is fast as compared to the DROP

command as there are fewer

complications.

let’s consider the given database Student _data:

Query

CREATE TABLE Student _details (

ROLL_NO INT,

NAME VARCHAR(25),

ADDRESS VARCHAR(25),

PHONE INT ,

AGE INT); --

Inserting the data in Student Table

INSERT INTO Student _details(ROLL_NO,NAME,ADDRESS,PHONE,AGE) VALUES

(1,'Ram','Delhi',9415536635,24),

(2,'Ramesh','Gurgaon',9414576635,21),

(3,'Sujit','Delhi',9815532635,20),

(4,'Suresh','Noida',9115536695,21),

(5,'Kajal','Gurgaon',8915536735,28),

(6,'Garima','Rohtak',7015535635,23);

Output

Student Table

Example1:

To delete the whole database

Query:
DROP DATABASE student_data;

After running the above query whole database will be deleted.

Example2:

To delete the whole table from the Database

Query:

DROP TABLE student_details;

After running the above query whole table from the database will be deleted.

Example3:

To truncate the Student_details table from the student_data database.

Query:

TRUNCATE TABLE Student_details;

After running the above query Student_details table will be truncated, i.e, the data will be

deleted but the structure will remain in the memory for further operations.

SQL DESC Statement (Describe Table)

SQL DESC statement use for describe the list of column definitions for specified table.

You can use either DESC or DESCRIBE statement. both are return same result.

DESCRIBE statement to get following information:

 Column Name

 Column allow NULL or NOT NULL

 Datatype of the Column

 With database size precision and If NUMERIC datatype scale.

SQL DESC Syntax

SQL DESCRIBE Table Column use following syntax,

DESC table_name

SQL DESC Example

SQL> DESC users_info;

Name Null? Type

------------------------------ -------- ----------------------------

NO NOT NULL NUMBER(3)

NAME VARCHAR2(30)

ADDRESS VARCHAR2(70)

CONTACT_NO VARCHAR2(12)

SQL DESCRIBE Syntax

DESCRIBE table_name

SQL DESCRIBE Syntax

SQL> DESCRIBE users_info;

Name Null? Type

------------------------------ -------- ----------------------

NO NOT NULL NUMBER(3)

NAME VARCHAR2(30)

ADDRESS VARCHAR2(70)

CONTACT_NO VARCHAR2(12)

DML Commands in SQL

DML is an abbreviation of Data Manipulation Language.

The DML commands in Structured Query Language change the data present in the SQL

database. We can easily access, store, modify, update and delete the existing records from the

database using DML commands.

Following are the four main DML commands in SQL:

1. SELECT Command

2. INSERT Command

3. UPDATE Command

4. DELETE Command

SELECT DML Command

SELECT is the most important data manipulation command in Structured Query Language. The

SELECT command shows the records of the specified table. It also shows the particular record

of a particular column by using the WHERE clause.

Syntax of SELECT DML command

1. SELECT column_Name_1, column_Name_2, ….., column_Name_N FROM Name_of_table;

Here, column_Name_1, column_Name_2, ….., column_Name_N are the names of those

columns whose data we want to retrieve from the table.

If we want to retrieve the data from all the columns of the table, we have to use the following

SELECT command:

1. SELECT * FROM table_name;

Examples of SELECT Command

Example 1: This example shows all the values of every column from the table.

1. SELECT * FROM Student;

This SQL statement displays the following values of the student table:

Student_ID Student_Name Student_Marks

Bcom1001 Abhay 85

Bcom1002 Anuj 75

Bcom1003 Bheem 60

Bcom1004 Ram 79

Bcom1005 Sumit 80

Example 2: This example shows all the values of a specific column from the table.

1. SELECT Emp_Id, Emp_Salary FROM Employee;

This SELECT statement displays all the values of Emp_Salary and Emp_Id column

of Employee table:

Emp_Id Emp_Salary

201 25000

202 45000

203 30000

204 29000

205 40000

Example 3: This example describes how to use the WHERE clause with the SELECT DML

command.

Let's take the following Student table:

Student_ID Student_Name Student_Marks

Bcom1001 Abhay 80

Bcom1002 Ankit 75

Bcom1003 Bheem 80

Bcom1004 Ram 79

Bcom1005 Sumit 80

If you want to access all the records of those students whose marks is 80 from the above table,

then you have to write the following DML command in SQL:

1. SELECT * FROM Student WHERE Stu_Marks = 80;

The above SQL query shows the following table in result:

Student_ID Student_Name Student_Marks

Bcom1001 Abhay 80

Bcom1003 Bheem 80

Bcom1005 Sumit 80

INSERT DML Command

INSERT is another most important data manipulation command in Structured Query Language,

which allows users to insert data in database tables.

Syntax of INSERT Command

1. INSERT INTO TABLE_NAME (column_Name1 , column_Name2 , column_Name3 , colu

mn_NameN) VALUES (value_1, value_2, value_3, value_N) ;

Examples of INSERT Command

Example 1: This example describes how to insert the record in the database table.

Let's take the following student table, which consists of only 2 records of the student.

Stu_Id Stu_Name Stu_Marks Stu_Age

101 Ramesh 92 20

201 Jatin 83 19

Suppose, you want to insert a new record into the student table. For this, you have to write the

following DML INSERT command:

1. INSERT INTO Student (Stu_id, Stu_Name, Stu_Marks, Stu_Age) VALUES (104, Anmol, 89,

19);

UPDATE DML Command

UPDATE is another most important data manipulation command in Structured Query Language,

which allows users to update or modify the existing data in database tables.

Syntax of UPDATE Command

1. UPDATE Table_name SET [column_name1= value_1, ….., column_nameN = value_N] WHE

RE CONDITION;

Here, 'UPDATE', 'SET', and 'WHERE' are the SQL keywords, and 'Table_name' is the name of

the table whose values you want to update.

Examples of the UPDATE command

Example 1: This example describes how to update the value of a single field.

Let's take a Product table consisting of the following records:

Suppose, you want to update the Product_Price of the product whose Product_Id is P102. To do

this, you have to write the following DML UPDATE command:

1. UPDATE Product SET Product_Price = 80 WHERE Product_Id = 'P102' ;

Example 2: This example describes how to update the value of multiple fields of the

database table.

Let's take a Student table consisting of the following records:

Stu_Id Stu_Name Stu_Marks Stu_Age

101 Ramesh 92 20

201 Jatin 83 19

202 Anuj 85 19

203 Monty 95 21

Product_Id Product_Name Product_Price Product_Quantity

P101 Chips 20 20

P102 Chocolates 60 40

P103 Maggi 75 5

P201 Biscuits 80 20

P203 Namkeen 40 50

102 Saket 65 21

103 Sumit 78 19

104 Ashish 98 20

Suppose, you want to update Stu_Marks and Stu_Age of that student whose Stu_Id is 103 and

202. To do this, you have to write the following DML Update command:

1. UPDATE Student SET Stu_Marks = 80, Stu_Age = 21 WHERE Stu_Id = 103 AND Stu_Id = 2

02;

DELETE DML Command

DELETE is a DML command which allows SQL users to remove single or multiple existing

records from the database tables.

This command of Data Manipulation Language does not delete the stored data permanently from

the database. We use the WHERE clause with the DELETE command to select specific rows

from the table.

Syntax of DELETE Command

1. DELETE FROM Table_Name WHERE condition;

Examples of DELETE Command

Example 1: This example describes how to delete a single record from the table.

Let's take a Product table consisting of the following records:

Product_Id Product_Name Product_Price Product_Quantity

P101 Chips 20 20

P102 Chocolates 60 40

P103 Maggi 75 5

P201 Biscuits 80 20

P203 Namkeen 40 50

Suppose, you want to delete that product from the Product table whose Product_Id is P203. To

do this, you have to write the following DML DELETE command:

1. DELETE FROM Product WHERE Product_Id = 'P202' ;

Example 2: This example describes how to delete the multiple records or rows from the

database table.

Let's take a Student table consisting of the following records:

Stu_Id Stu_Name Stu_Marks Stu_Age

101 Ramesh 92 20

201 Jatin 83 19

202 Anuj 85 19

203 Monty 95 21

102 Saket 65 21

103 Sumit 78 19

104 Ashish 98 20

Suppose, you want to delete the record of those students whose Marks is greater than 70. To do

this, you have to write the following DML Update command:

DELETE FROM Student WHERE Stu_Marks > 70 ;

DCL (Data Control Language)

DCL includes commands such as GRANT and REVOKE which mainly deal with the

rights, permissions, and other controls of the database system.

List of DCL commands:

GRANT: This command gives users access privileges to the database.

https://www.geeksforgeeks.org/mysql-grant-revoke-privileges/

Syntax:

GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

REVOKE: This command withdraws the user’s access privileges given by using the GRANT

command.

Syntax:

REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

TCL (Transaction Control Language)

Transactions group a set of tasks into a single execution unit. Each transaction begins

with a specific task and ends when all the tasks in the group successfully complete. If any of the

tasks fail, the transaction fails. Therefore, a transaction has only two results: success or failure.

You can explore more about transactions here. Hence, the following TCL commands are used to

control the execution of a transaction:

BEGIN: Opens a Transaction.

COMMIT: Commits a Transaction.

Syntax:

COMMIT;

ROLLBACK: Rollbacks a transaction in case of any error occurs.

Syntax:

ROLLBACK;

SAVEPOINT: Sets a save point within a transaction.

Syntax:

SAVEPOINT SAVEPOINT_NAME;

Normalization

https://www.geeksforgeeks.org/difference-between-grant-and-revoke/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-ddl-dml-tcl-dcl/
https://www.geeksforgeeks.org/sql-ddl-dml-tcl-dcl/
https://www.geeksforgeeks.org/sql-ddl-dml-tcl-dcl/

A large database defined as a single relation may result in data duplication. This repetition of

data may result in:

 Making relations very large.

 It isn't easy to maintain and update data as it would involve searching many records

in relation.

 Wastage and poor utilization of disk space and resources.

 The likelihood of errors and inconsistencies increases.

So to handle these problems, we should analyze and decompose the relations with redundant

data into smaller, simpler, and well-structured relations that are satisfy desirable properties.

Normalization is a process of decomposing the relations into relations with fewer attributes.

What is Normalization?

 Normalization is the process of organizing the data in the database.

 Normalization is used to minimize the redundancy from a relation or set of relations.

It is also used to eliminate undesirable characteristics like Insertion, Update, and

Deletion Anomalies.

 Normalization divides the larger table into smaller and links them using relationships.

 The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to

eliminate anomalies leads to data redundancy and can cause data integrity and other problems as

the database grows. Normalization consists of a series of guidelines that helps to guide you in

creating a good database structure.

Data modification anomalies can be categorized into three types:

 Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple

into a relationship due to lack of data.

 Deletion Anomaly: The delete anomaly refers to the situation where the deletion of

data results in the unintended loss of some other important data.

 Updatation Anomaly: The update anomaly is when an update of a single data value

requires multiple rows of data to be updated.

Types of Normal Forms:

Normalization works through a series of stages called Normal forms. The normal forms

apply to individual relations. The relation is said to be in particular normal form if it satisfies

constraints.

Following are the various types of Normal forms:

Normal

Form

Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully

functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

BCNF A stronger definition of 3NF is known as Boyce Codd's normal form.

4NF A relation will be in 4NF if it is in Boyce Codd's normal form and has no

multi-valued dependency.

5NF A relation is in 5NF. If it is in 4NF and does not contain any join dependency,

joining should be lossless.

Advantages of Normalization

 Normalization helps to minimize data redundancy.

 Greater overall database organization.

 Data consistency within the database.

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

 Much more flexible database design.

 Enforces the concept of relational integrity.

Disadvantages of Normalization

 You cannot start building the database before knowing what the user needs.

 The performance degrades when normalizing the relations to higher normal forms,

i.e., 4NF, 5NF.

 It is very time-consuming and difficult to normalize relations of a higher degree.

 Careless decomposition may lead to a bad database design, leading to serious

problems.

Introduction to PL/SQL

PL/SQL stands for “Procedural Language extensions to the Structured Query Language”.

SQL is a popular language for both querying and updating data in relational database

management systems (RDBMS).

PL/SQL adds many procedural constructs to SQL language to overcome some limitations of

SQL. In addition, PL/SQL provides a more comprehensive programming language solution for

building mission-critical applications on Oracle Databases.

PL/SQL is a highly structured and readable language. Its constructs express the intents of the

code clearly. Also, PL/SQL is a straightforward language to learn.

PL/SQL is a standard and portable language for Oracle Database development. If you develop a

program that executes on an Oracle Database, you can quickly move it to another compatible

Oracle Database without any changes.

PL/SQL is an embedded language. PL/SQL only can be executed in an Oracle Database. It was

not designed to be used as a standalone language like Java, C#, and C++. In other words, you

cannot develop a PL/SQL program that runs on a system that does not have an Oracle Database.

PL/SQL is a high-performance and highly integrated database language. Besides PL/SQL, you

can use other programming languages like Java, C#, and C++.

However, it is easier to write efficient code in PL/SQL than other programming languages when

it comes to interacting with the Oracle Database. In particular, you can use PL/SQL-specific

constructs like the FORALL statement that helps improve database performance.

PL/SQL architecture

https://www.oracletutorial.com/oracle-basics/
https://www.oracletutorial.com/oracle-basics/oracle-select/
https://www.oracletutorial.com/oracle-basics/oracle-update/
https://www.javazerotomastery.com/
https://www.csharptutorial.net/

The following picture illustrates the PL/SQL architecture:

In this architecture, the PL/SQL engine compiles PL/SQL code into byte-code and executes the

executable code. The PL/SQL engine can only be installed in an Oracle Database server or an

application development tool such as Oracle Forms.

Once you submit a PL/SQL block to the Oracle Database server, the PL/SQL engine

collaborates with the SQL engine to compile and execute the code. PL/SQL engine runs the

procedural elements while the SQL engine processes the SQL statements.

Now you should have a basic understanding of PL/SQL programming language and its

architecture. Let’s create the first working PL/SQL anonymous block

 Procedure

A procedure is a set of instructions which takes input and performs a certain task. In

SQL, procedures do not return a value. In Java, procedures and functions are same and also

called subroutines.In SQL, a procedure is basically a precompiled statement which is stored

inside the database. Therefore, a procedure is sometimes also called a stored procedure. A

procedure always has a name, list of parameters, and compiled SQL statements. In SQL, a

procedure does not return any value.

CREATE [OR REPLACE] PROCEDURE procedure_name

 [(parameter [,parameter])]

https://www.oracletutorial.com/plsql-tutorial/plsql-anonymous-block/
https://www.oracletutorial.com/plsql-tutorial/plsql-anonymous-block/

IS

 [declaration_section]

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [procedure_name];

Create procedure example

In this example, we are going to insert record in user table. So you need to create user table first.

Table creation:

1. create table user(id number(10) primary key,name varchar2(100));

Now write the procedure code to insert record in user table.

Procedure Code:

1. create or replace procedure "INSERTUSER"

2. (id IN NUMBER,

3. name IN VARCHAR2)

4. is

5. begin

6. insert into user values(id,name);

7. end;

8. /

Output:

Procedure created.

1. BEGIN

2. insertuser(101,'Rahul');

3. dbms_output.put_line('record inserted successfully');

4. END;

5. /

Now, see the "USER" table, you will see one record is inserted.

ID Name

101 Rahul

 Function

A function, in the context of computer programming languages, is a set of instructions

which takes some input and performs certain tasks. In SQL, a function returns a value. In other

words, a function is a tool in SQL that is used to calculate anything to produce an output for the

provided inputs. In SQL queries, when a function is called, it returns the resulting value. It also

controls to the calling function. However, in a function, we cannot use some DML statements

like Insert, Delete, Update, etc.Also, a function can be called through a procedure. Based on

definition, there are two types of functions namely, predefined function and userdefined

function. Another important point about functions is that they may or may not return a value, i.e.

a function can return a null valued as well.

Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name [parameters]

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

1. Function_name: specifies the name of the function.

2. [OR REPLACE] option allows modifying an existing function.

3. The optional parameter list contains name, mode and types of the parameters.

4. IN represents that value will be passed from outside and OUT represents that this

 parameter will be used to return a value outside of the procedure.

5. RETURN clause specifies that data type you are going to return from the function.

6. Function_body contains the executable part.

7. The AS keyword is used instead of the IS keyword for creating a standalone function.

Difference between Function and Procedure

Following are the important differences between SQL Function and SQL Procedure−

Key Function Procedure

Definition

A function is used to

calculate result using given

inputs.

A procedure is used to perform

certain task in order.

Call
A function can be called by a

procedure.

A procedure cannot be called by a

function.

DML
DML statements cannot be

executed within a function.

DML statements can be executed

within a procedure.

SQL, Query
A function can be called

within a query.

A procedure cannot be called

within a query.

SQL, Call

Whenever a function is

called, it is first compiled

before being called.

A procedure is compiled once and

can be called multiple times

without being compiled.

SQL, Return

A function returns a value

and control to calling

function or code.

A procedure returns the control but

not any value to calling function or

code.

try-catch
A function has no support for

try-catch

A procedure has support for try-

catch blocks.

SELECT
A select statement can have a

function call.

A select statement can't have a

procedure call.

Explicit

Transaction

Handling

A function cannot have

explicit transaction handling.

A procedure can use explicit

transaction handling.

Exception Handling

program and an appropriate action is taken against the error condition. There are two types of

exceptions −

 System-defined exceptions

 User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many

exceptions as you can handle. The default exception will be handled using WHEN others

THEN −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table

DECLARE

 c_id customers.id%type := 8;

 c_name customerS.Name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there

is no customer with ID value 8 in our database, the program raises the run-time

exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal

database error, but exceptions can be raised explicitly by the programmer by using the

command RAISE. Following is the simple syntax for raising an exception −

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END;

You can use the above syntax in raising the Oracle standard exception or any user-defined

exception. In the next section, we will give you an example on raising a user-defined exception.

You can raise the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A

user-defined exception must be declared and then raised explicitly, using either a RAISE

statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE

 my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the

user enters an invalid ID, the exception invalid_id is raised.

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customerS.Name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is

violated by a program. For example, the predefined exception NO_DATA_FOUND is raised

when a SELECT INTO statement returns no rows. The following table lists few of the important

pre-defined exceptions −

Exception
Oracle

Error
SQLCODE Description

ACCESS_INTO_NULL 06530 -6530
It is raised when a null object is

automatically assigned a value.

CASE_NOT_FOUND 06592 -6592

It is raised when none of the choices

in the WHEN clause of a CASE

statement is selected, and there is no

ELSE clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when a program attempts

to apply collection methods other

than EXISTS to an uninitialized

nested table or varray, or the

program attempts to assign values to

the elements of an uninitialized

nested table or varray.

DUP_VAL_ON_INDEX 00001 -1

It is raised when duplicate values are

attempted to be stored in a column

with unique index.

INVALID_CURSOR 01001 -1001

It is raised when attempts are made

to make a cursor operation that is

not allowed, such as closing an

unopened cursor.

INVALID_NUMBER 01722 -1722

It is raised when the conversion of a

character string into a number fails

because the string does not represent

a valid number.

LOGIN_DENIED 01017 -1017

It is raised when a program attempts

to log on to the database with an

invalid username or password.

NO_DATA_FOUND 01403 +100
It is raised when a SELECT INTO

statement returns no rows.

NOT_LOGGED_ON 01012 -1012

It is raised when a database call is

issued without being connected to

the database.

PROGRAM_ERROR 06501 -6501
It is raised when PL/SQL has an

internal problem.

ROWTYPE_MISMATCH 06504 -6504

It is raised when a cursor fetches

value in a variable having

incompatible data type.

SELF_IS_NULL 30625 -30625

It is raised when a member method

is invoked, but the instance of the

object type was not initialized.

STORAGE_ERROR 06500 -6500
It is raised when PL/SQL ran out of

memory or memory was corrupted.

TOO_MANY_ROWS 01422 -1422

It is raised when a SELECT INTO

statement returns more than one

row.

VALUE_ERROR 06502 -6502

It is raised when an arithmetic,

conversion, truncation, or

sizeconstraint error occurs.

ZERO_DIVIDE 01476 1476
It is raised when an attempt is made

to divide a number by zero.

DDL COMMANDS

Create command

SQL> create table stu(sno number(3), name varchar2(20),mark1 number(3));

Table created.

Desc command

SQL> desc stu;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(20)

 MARK1 NUMBER(3)

Alter command

SQL> alter table stu add(mark2 number(3));

Table altered.

SQL> desc stu;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(20)

 MARK1 NUMBER(3)

 MARK2 NUMBER(3)

SQL> alter table stu drop(mark1);

Table altered.

SQL> desc stu;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(20)

 MARK2 NUMBER(3)

Add command

SQL> alter table stu add(mark1 number(3));

Table altered.

SQL> desc stu;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(20)

 MARK2 NUMBER(3)

 MARK1 NUMBER(3)

Modify command

SQL> alter table stu modify(name varchar2(10));

Table altered.

SQL> desc stu;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(10)

 MARK2 NUMBER(3)

 MARK1 NUMBER(3)

Truncate command

SQL> truncate table stu;

Table truncated.

Rename command

SQL> rename stu to stu1;

Table renamed.

SQL> desc stu1;

 Name Null? Type

 --- -------- ----------------------------

 SNO NUMBER(3)

 NAME VARCHAR2(10)

 MARK2 NUMBER(3)

 MARK1 NUMBER(3)

Drop command

SQL> drop table stu1;

Table dropped.

SQL> desc stu1;

ERROR:

ORA-04043: object stu1 does not exist

DML COMMANDS

Table creation

SQL> create table Employee(Emp_id number(3),Emp_name varchar2(15),Emp_dept

varchar2(15),Emp_salary number(6));

Table created.

Insert command

SQL> insert into Employee values(&Emp_id,'&Emp_name','&Emp_dept',&Emp_salary);

Enter value for Emp_id: 101

Enter value for Emp_name: Kaleeswari

Enter value for Emp_dept: Sales

Enter value for Emp_salary: 10000

old 1: insert into Employee values(&Emp_id,'&Emp_name','&Emp_dept',&Emp_salary)

new 1: insert into Employee values(101,'Kaleeswari','Sales',10000)

1 row created.

SQL> /

Enter value for Emp_id: 102

Enter value for Emp_name: Gayathri

Enter value for Emp_dept: Purchase

Enter value for Emp_salary: 15000

old 1: insert into Employee values(&Emp_id,'&Emp_name','&Emp_dept',&Emp_salary)

new 1: insert into Employee values(102,'Gayathri','Purchase',15000)

1 row created.

SQL> /

Enter value for Emp_id: 103

Enter value for Emp_name: Kaviya

Enter value for Emp_dept: Inventory

Enter value for Emp_salary: 15000

old 1: insert into Employee values(&Emp_id,'&Emp_name','&Emp_dept',&Emp_salary)

new 1: insert into Employee values(103,'Kaviya','Inventory',15000)

1 row created.

Select command

SQL> select*from Employee;

EMP_ID EMP_NAME EMP_DEPT EMP_SALARY

---------- --------------- --------------- --

 101 Kaleeswari Sales 10000

 102 Gayathri Purchase 15000

 103 Kaviya Inventory 15000

Update command

SQL> update Employee set EMP_NAME='KALEESWARI'where EMP_ID=101;

1 row updated.

SQL> select*from Employee;

EMP_ID EMP_NAME EMP_DEPT EMP_SALARY

--------------------------------------- --

101 KALEESWARI Sales 10000

102 Gayathri Purchase 15000

103 Kaviya Inventory 15000

Delete command

SQL> delete from Employee;

3 rows deleted.

SQL> select*from Employee;

No rows selected

DCL COMMANDS

Grant

SQL> grant connect,dba,resource to commercesf identified by palani;

Grant succeeded.

SQL> connect commercesf/palani;

Connected.

SQL> select user from dual;

USER

COMMERCESF

Revoke

SQL> revoke connect,dba,resource from commercesf;

Revoke succeeded.

SQL> connect system/manager;

Connected.

SQL> select user from dual;

USER

SYSTEM

SQL> create user college identified by apa;

User created.

SQL> grant create session to college;

Grant succeeded.

SQL>grant create table to college;

Grant succeeded.

SQL> connect college;

Enter password: ***

Connected.

SQL> select user from dual;

USER

COLLEGE

SQL> connect system

Enter password: *******

Connected.

Table creation

SQL> create table Book (Book_no number(3),Book_name varchar2(15),Book_athor

varchar2(15));

Table created.

Insert command

SQL> insert into Book values(101,'RDBMS','Alex');

1 row created.

SQL> insert into Book values(102,'VISUALBASIC','Lenin');

1 row created.

SQL> insert into Book values(103,'C++','Balagurusamy');

1 row created.

Select command

SQL> select*from Book;

BOOK_NO BOOK_NAME BOOK_ATHOR

---------- --------------- ---

 101 RDBMS Alex

 102 VISUALBASIC Lenin

 103 C++ Balagurusamy

Commit command

SQL> commit;

Commit complete.

Delete command

SQL> delete from Book where Book_name='C++';

1 row deleted.

SQL> select*from Book;

BOOK_NO BOOK_NAME BOOK_ATHOR

------------------------- --

 101 RDBMS Alex

 102 VISUALBASIC Lenin

Rollback command

SQL> rollback;

Rollback complete.

SQL> select*from Book;

BOOK_NO BOOK_NAME BOOK_ATHOR

---------- --------------- ---

 101 RDBMS Alex

 102 VISUALBASIC Lenin

 103 C++ Balagurusamy

EXCEPTION HANDLING

SQL> set serveroutput on;

SQL> declare

n number(4);

d number(4);

begin

n:=&n;

d:=n/0;

exception

when zero_divide then

dbms_output.put_line('dividing by error exception is caught');

end;

11 /

Enter value for n: 4

old 5: n:=&n;

new 5: n:=4;

dividing by error exception is caught

PL/SQL procedure successfully completed.

SUM OF THE PROCEDURE

SQL> create or replace procedure sum(n1 IN number,n2 IN number)IS total number(6);

begin

total:=n1+n2;

dbms_output.put_line('The sum is:'||total);

end;

6 /

Procedure created.

SQL> set serveroutput on;

SQL> begin

sum(12,13);

end;

4 /

The sum is:25

PL/SQL procedure successfully completed.

FUNCTION CREATION

SQL> create table customers(cus_id number(6),cus_name varchar2(25),cus_age

number(6),cus_address varchar2(25),cus_salary number(6));

Table created.

Insert command

SQL> insert into customers

values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary);

Enter value for cus_id: 1

Enter value for cus_name: Kaleeswari

Enter value for cus_age: 22

Enter value for cus_address: palani

Enter value for cus_salary: 2000.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(1,'Kaleeswari',22,'palani',2000.00)

1 row created.

SQL> /

Enter value for cus_id: 2

Enter value for cus_name: Gayathri

Enter value for cus_age: 25

Enter value for cus_address: delhi

Enter value for cus_salary: 1500.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(2,'Gayathri',25,'delhi',1500.00)

1 row created.

SQL> /

Enter value for cus_id: 3

Enter value for cus_name: Nagalakshmi

Enter value for cus_age: 26

Enter value for cus_address: mumbai

Enter value for cus_salary: 6500.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(3,'Nagalakshmi',26,'mumbai',6500.00)

1 row created.

SQL> /

Enter value for cus_id: 4

Enter value for cus_name: Paritha

Enter value for cus_age: 23

Enter value for cus_address: madhurai

Enter value for cus_salary: 2000.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(4,'paritha',23,'madhurai',2000.00)

1 row created.

SQL> /

Enter value for cus_id: 5

Enter value for cus_name: Srinithi

Enter value for cus_age: 27

Enter value for cus_address: chennai

Enter value for cus_salary: 4500.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(5,'Srinithi',27,'chennai',4500.00)

1 row created.

SQL> /

Enter value for cus_id: 6

Enter value for cus_name: Aarthi

Enter value for cus_age: 25

Enter value for cus_address: covai

Enter value for cus_salary: 1500.00

old 2: values(&cus_id,'&cus_name',&cus_age,'&cus_address',&cus_salary)

new 2: values(6,'Aarthi',25,'covai',1500.00)

1 row created.

Select command

SQL> select*from customers;

CUS_ID CUS_NAME CUS_AGE CUS_ADDRESS CUS_SALARY

1 Kaleeswari 22 palani 2000

2 Gayathri 25 delhi 1500

3 Nagalakshmi 26 mumbai 6500

4 Paritha 23 madhurai 2000

5 Srinithi 27 chennai 4500

6 Aarthi 25 covai 1500

6 rows selected.

SQL> create or replace function totalcustomers

return number IS

total number(2):=0;

begin

select count(*)into total

from customers;

return total;

end;

9 /

Function created.

SQL> set serveroutput on;

SQL> declare

c number(2);

begin

c:=totalcustomers();

dbms_output.put_line('Total no.of customers:'||c);

end;

7 /

Total no.of customers:6

PL/SQL procedure successfully completed.

 QUESTION BANK

UNIT I:-

1. A domain is a set of all possible data values.

2. In formal relational term for table is called Relation.

3. In formal relational term for row or record is known as Tuple.

4. In formal relational term for rows are called cardinality.

5. In formal relational term for column or field is known as attribute.

6. In formal relational term for number of columns are called Degree.

7. The Primary key is referred as unique identifier.

8. The ERD stands for Entity-Relationship Diagram.

9. Data model makes easier to understand the meaning of the data.

10. A Database is a collection of data designed to be used by different people.

11. An IS stands for Information Services.

12. The RDBMS stands for Relational Database Management System.

13. The DBMS stands for Database Management System.

14. The Conceptual model represents a global view of the data.

15. The ERD is a Visual representation of E-R model.

16. The highest and the outermost layer is called External or Logical level.

17. The lowest level layer is called is called Physical level.

18. The RDBMS terminology principles were laid down by Dr.E.F.Codd.

19. The External level is the end user’s view of the data environment.

20. The physical components organized and stored are called rawdata.

UNIT II:-

1. The set of basic objects are called Entities.

2. An entity is represented by a set of Attributes.

3. Simple attributes cannot be divided into subparts.

4. Composite attributes can be divided into subparts.

5. An entity which does not have a value for an attribute is called Null attribute.

6. The Derived attributes can be derived from the values of other related attributes or entities.

7. A Relationship is an association among several attributes.

8. An attribute which has a set of values for specific entities are called Single valued attributes.

9. An attribute which has different numbers of values are called Multivalued attribute.

10. A Binary relationship exits when two entities are associated.

11. A Ternary relationship exits when there are three entities associated.

12. The n-ary relationship set refers to nonbinary relationship set.

13. The Rectangles diagram represents the entity sets.

14. The Ellipses diagram represents the attributes.

15. The Diamonds diagram represents the relationship sets.

16. The lines diagram represents the link of entity set and relationship set.

17. The Double ellipses diagram represents the multivalved attributes.

18. The Dashed ellipses represent the derived attributes.

19. An entity set not having sufficient attributes is called Weak entity set.

20. When an entity is associated with another entity, the relationship is called as one-to-one.

UNIT III:-

1. The BCNF stands for Boyce – Codd Normal Form

2. The elimination of repeating groups is called 1NF

3. The elimination of redundant data is called 2NF

4. Normalization is the process of building database structures to store data.

5. An intelligent key is based upon data values.

6. A key uniquely identifies a row in a table.

7. The left hand side of a functional dependency is called determinant.

8. The right hand side of a functional dependency is called dependent.

9. The transitive dependencies have to be removed by 3NF.

10. The multivalued dependencies are removed by 4 NF.

11. The intelligent keys and non intelligent keys are two types of keys.

12. The repetition of information and inability to represent certain information are the pitfalls in

relational database design

13. The goal of a relational database design is to generate a set of relation scheme.

14. The careless decomposition may lead to another form of bad design.

15. The Transitive dependency is a description of a type of functional dependency.

16. A Functional dependency describes the relationship between attributes in a relation.

17. The primary key consists of only one Attribute.

18. All the attributes in the relation are Components of the primary key

19. Each primary key may have any number of Foreign keys using the same values.

20. A Foreign key is a column in a table that uniquely identifies the records from a different

table.

UNIT IV:-

1. DDL Stands for Data Definition Language.

2. In RDBMS rows are called the Records.

3. In RDBMS columns are called the Fields.

4. A record is a collection of related Fields.

5. Altering command is used to change the structure of a table.

6. The Truncate command is used to delete all records stored in a table.

7. The Dropping command is used to remove a table from the database.

8. The View command is used to view the structure of a table,

9. The Data Manipulation Languages are used to manipulate the existing objects.

10. The Insert command is used to add one or more rows to a table.

11. The Select command is used to retrieve the stored data from a table.

12. The Distinct command is used to avoid the selection of duplicate rows.

13. The Update command is used to update rows in a table.

14. The Delete command is used to delete rows from a table.

15. The Rollback command is used to undo all the changes made in the current transaction.

16. The Commit command is used to make all transaction changes permanent to the

database.

17. TCL stands for Transaction Control Language.

18. All changes made to the database is defined as a Transaction.

19. The DCL stands for Data Control Language.

20. Modify & Add commands are the two types of Alter command.

UNIT-V:-

1. A Procedure is a module that performs one or more actions.

2. The portion of the procedure definition that comes before the IS keyword is called

Procedure header.

3. The name of the procedure can be appended directly after the END keyword.

4. The RETURN statement is generally associated with a function.

5. The PL/SQL allows the use of return statement in a procedure.

6. A Function is a module that returns a value.

7. The portion of the function that comes before the IS keyword is called the Function

Header.

8. The body of the function consists the Declaration, Execution and Exception sections.

9. The PL/SQL stands for Procedural Language extensions to the Structured Query

Language.

10. Date data type, stores both dates and times.

11. CLOB stands for Character Large Object.

12. The ROWID represents the unique address of a row in its table.

13. A Cursor attribute takes the form % attribute-name and is appended to the name of a

cursor or cursor variable.

14. The FETCH Command retrieves the next row from the cursor’s result set.

15. In the PL/SQL language errors of any kind are treated as Exceptions.

16. The System exceptions and programmer defined exceptions are the two types of

exceptions.

17. An Exception handlers must appear after all the Executable statements.

18. The Exception keyword indicates the start of the exception section and the individual

exception.

19. The SQLERRM stands for the Structured Query Language Error Message.

20. The BLOB Stands for Binary Large Object.

Online Reference

S.No Link

1 https://youtu.be/T7AxM7Vqvaw

2 https://youtu.be/3EJlovevfcA

3 https://youtu.be/q1kQ1vgW7D8

4 https://youtu.be/9RlxvHMg9PI

https://youtu.be/T7AxM7Vqvaw
https://youtu.be/3EJlovevfcA
https://youtu.be/q1kQ1vgW7D8
https://youtu.be/9RlxvHMg9PI

	Codd's 12 Rules
	Rule 1: Information Rule
	Rule 2: Guaranteed Access Rule
	Rule 3: Systematic Treatment of NULL Values
	Rule 4: Active Online Catalog
	Rule 5: Comprehensive Data Sub-Language Rule
	Rule 6: View Updating Rule
	Rule 7: High-Level Insert, Update, and Delete Rule
	Rule 8: Physical Data Independence
	Rule 9: Logical Data Independence
	Rule 10: Integrity Independence
	Rule 11: Distribution Independence
	Rule 12: Non-Subversion Rule
	What is a Primary Key
	Syntax for creating primary key constraint:
	Properties of a Primary Key:

	Use of Primary Key
	Understanding Primary Key
	What is a Foreign Key
	Use of Foreign Key
	Example of Foreign Key
	What is a Candidate Key
	Role of a Candidate Key
	How a Candidate key is different from a Primary Key

	Example of Candidate Key

	Alternate Key
	The SQL Alternate Key
	Features of Alternate Keys
	DQL (Data Query Language)

	Creating a Table
	Create command can also be used to create tables. Now when we create a table, we have to specify the details of the columns of the tables too. We can specify the names and datatypes of various columns in the create command itself.
	Example for creating Table
	Most commonly used datatypes for Table columns
	Here we have listed some of the most commonly used datatypes used for columns in tables.

	ALTER TABLE ADD Column Statement in SQL
	ALTER TABLE ADD Column Statement Syntax:

	ALTER TABLE DROP Column Statement
	ALTER TABLE DROP Column Statement Syntax:
	ALTER TABLE DROP Column Statement Example:

	ALTER TABLE MODIFY Column Statement in SQL
	ALTER TABLE MODIFY Column Statement Syntax:
	ALTER TABLE MODIFY Column Statement Example:

	SQL ALTER TABLE Queries
	Query: ALTER TABLE Student ADD (AGE number(3),COURSE varchar(40));
	Query: ALTER TABLE Student MODIFY COURSE varchar(20);
	Query: ALTER TABLE Student DROP COLUMN COURSE;

	DROP
	Syntax
	Case 1: To Drop a table
	Case 2: To Drop a database

	TRUNCATE
	Syntax

	Differences Between DROP and TRUNCATE
	Query
	Output
	To delete the whole database
	To delete the whole table from the Database
	To truncate the Student_details table from the student_data database.
	Query:

	SQL DESC Statement (Describe Table)
	SQL DESC Syntax
	SQL DESC Example
	SQL DESCRIBE Syntax
	SQL DESCRIBE Syntax (1)
	SELECT DML Command
	Examples of SELECT Command

	INSERT DML Command
	Examples of INSERT Command
	UPDATE DML Command
	Examples of the UPDATE command

	DELETE DML Command
	Examples of DELETE Command
	DCL (Data Control Language)
	TCL (Transaction Control Language)

	What is Normalization?
	Types of Normal Forms:
	Advantages of Normalization
	Disadvantages of Normalization
	Introduction to PL/SQL
	PL/SQL architecture
	Procedure
	Create procedure example
	Difference between Function and Procedure
	Syntax for Exception Handling
	Example

	Raising Exceptions
	User-defined Exceptions
	Example

	Pre-defined Exceptions

